

2023-24 Biology Curriculum Map

Unit One: Nature of Life			
Chapter One - Foundations of Biology			
TN State Standard	ACT Standard	Pacing	
BIO1.LS1.1 Compare and contrast existing models, identify patterns, and use structural and functional evidence to analyze the		1.2 Patterns of Life 21.1 Viruses	1 2
characteristics of life. Engage in argument about the designation of viruses as non-living based on these characteristics.		1 day for common asse	
		Total Number	4 days
Chapter Two- Chemistry of Life			
TN State Standard	ACT Standard	Pacing	
BIO1.LS1.2 Evaluate comparative models of various cell types with a focus on organic molecules that make up cellular structures. BIO1.LS1.5 Research examples that demonstrate the functional variety of proteins and construct an argument based on evidence for the importance of the molecular structure to its function. Plan and carry out a controlled investigation to test prediction about factors which should cause an effect on the structure and function of a protein.		 2.3 Carbon Compounds 2.4 Chemical Reactions and Enzymes 1 day for common assession Total Number 	5 2 essment 8 days

Unit Two: Cellular Structure and Transport				
Chapter Three: Cellular Structure and Function				
TN State Standard	ACT Standard	Pacing		
BIO1.LS1.2				
Evaluate comparative models of various cell types with a focus on organic molecules that		8.1 Life is Cellular	.5	
make up cellular structures.		8.2 Cell Structure	4.5	
Chapter Four: Cellular Transport and Homeosta	isis	•		
TN State Standard BIO1.LS1.7	ACT Standard	Pacing		
Utilize a model of a cell plasma membrane to compare the various types of cellular		8.3 Cell Transport	4.5	
transport and test predictions about the movement of molecules into or out of a cell		8.4 Homeostasis and Cells		
based on the homeostasis of energy and		2.2 Properties of .	5	
matter in cells.		Water		
		1 day for common asses	sment	
		Total Number 2	L1 days	

Unit Three: DNA and the Cell Cycle Chapter Five: Cellular Growth and Division			
hapter Six: DNA, RNA, and Protein Synthesis		Cell Cycle	
<u>TN State Standard</u> BIO1.LS1.3 Integrate evidence to develop a structural model of a DNA molecule. Using the model, develop and communicate an explanation for	ACT Standard	Pacing 13.1 Identifying the Substance of Genes	
how DNA serves as a template for self-replication and encodes biological information.		13.2 The Structure .5 of DNA	
BIO1.LS1.4 Demonstrate how DNA sequence		13.3 DNA .5 Replication	
information is decoded through transcriptional processes within the cell in		14.1 RNA .5	

order to synthesize proteins. Examine the relationship of structure and function of various types of RNA and the importance of this relationship in these processes.		14.2 Ribosomes and Protein Synthesis	2	
BIO1.LS1.5 Research examples that demonstrate the functional variety of proteins and construct	amples that demonstrate the		.5	
an argument based on evidence for the		14.4 Mutations	.5	
importance of the molecular structure to its function. Plan and carry out a controlled investigation to test prediction about factors		1 day for common assessment		
which should cause an effect on the structure and function of a protein.		Total Number	9 days	
BIO1.LS3.2 Explain how protein formation results in phenotypic variation and discuss how changes in DNA can lead to somatic or germline mutations.				
Unit Four: Genetics				
Chapter Seven: Meiosis				
TN State Standard BIO1.LS3.1	ACT Standard	Pacing		
Model chromosome progression through meiosis and fertilization in order to argue how the process of sexual reproduction leads to both genetic similarities and		12.4 Meiosis	2	

variation in diploid organisms. Compare and contrast the processes of sexual and asexual reproduction, identifying the advantages and disadvantages of each.			
Chapter Eight: Mendelian Genetics Chapter Nine: Human Chromosomes and Disor	ders		
<u>TN State Standard</u> BIO1.LS3.2	ACT Standard	Pacing	
Explain how protein formation results in phenotypic variation and discuss how changes in DNA can lead to somatic or	ypic variation and discuss how	12.1 The Work of Gregor Mendel	.5
germline mutations. BIO1.LS3.3		12.2 Applying Mendel's Principles	1.5
Through pedigree analysis, identify patterns of trait inheritance to predict family member		12.3 Other Patterns of Inheritance	1.5
genotypes. Use mathematical thinking to predict the likelihood of various types of trait transmission.		15.1 Human Chromosomes	.5
BIO1.ETS2.1 Obtain, evaluate, and communicate		15.2 Human Genetic Disorders	.5
information on how molecular biotechnology may be used in a variety of fields.		15.3 Studying the Human Genome 16.2 The Process of Genetic	1
BIO1.ETS2.2 Investigate means by which karyotypes are utilized in diagnostic medicine.		Engineering 16.3 Applications of Biotechnology	

BIO1.ETS2.3 Analyze scientific and ethical arguments to support the pros and cons of applications of a specific biotechnology technique such as stem cell usage, in vitro fertilization, or genetically modified organisms.		16.4 Ethics of Biotechnology 1 day for common ass Total Number	essment 8.5
Chapter Ten: Evidence for Evolution Chapter Eleven: Population Genetics	Unit Five: Evolution and Biological Change		
TN State Standard	ACT Standard	Pacing	
BIO1.LS4.1 Evaluate scientific data collected from analysis of molecular sequences, fossil records, biogeography, and embryology. Identify chronological patterns of change		17.3 Darwin's Theory: Natural Selection	1
and communicate that biological evolution is supported by multiple lines of empirical evidence that identify similarities inherited		17.4 Evidence of Evolution	.5
from a common ancestor.		18.1 Genes and Variation	.25
BIO1.LS4.2 Using a model that demonstrates the change in allele frequencies resulting in evolution of		18.2 Evolution as Genetic Change	.25
a population over many generations, identify causative agents of change.		18.3 The Process of Speciation	.25
		18.4 Molecular Evolution	.25

		19.1 and 19.2 Finding Order in Biodiversity and Modern Evolutionary Classification 1 day for common asse	1 essment
		Total number	4.5 days
Un	it Six: Ecological Interactions and Energy Dynam	nics	
Chapter Twelve: The Biosphere and Biogeoche	mical Cycles		
TN State Standard BIO1.LS2.2	ACT Standard	<u>Pacing</u>	
Analyze through research the cycling of matter in our biosphere and explain how biogeochemical cycles are critical for		3.1 Introduction to Global Systems	.5
ecosystem function.		4.3 Cycles of Matter	2
BIO1.LS4.3 Identify ecosystem services and assess the role of biodiversity in support of these services. Analyze the role human activities have on disruption of these services.			
Chapter Thirteen: Photosynthesis and Cellular Respiration			
<u>TN State Standard</u> BIO1.LS1.8 Create a model of photosynthesis	ACT Standard	Pacing 9.1 Energy and Life	1
demonstrating the net flow of matter and			

energy into a cell. Use the model to explain energy transfer from light energy into stored chemical energy in the product. BIO1.LS1.9 Create a model of aerobic respiration demonstrating flow of matter and energy out of a cell. Use the model to explain energy transfer mechanisms. Compare aerobic respiration to alternative processes of glucose metabolism.		 9.2 Photosynthesis: An Overview 9.3 The Process of Photosynthesis 10.1 Cellular Respiration: An Overview 10.2 The Process of Cellular Respiration 10.3 Fermentation 	2
Chapter Fourteen: Energy Flow			
TN State Standard	ACT Standard	<u>Pacing</u>	
BIO1.LS2.4 Analyze data demonstrating the decrease in biomass observed in each successive trophic level. Construct an explanation considering the laws of conservation of energy and		4.1 Energy, Producers, and Consumers	.5
matter and represent this phenomenon in a mathematical model to describe the transfer of energy and matter between trophic levels.		4.1 Energy Flow in Ecosystems	.5
matter and represent this phenomenon in a mathematical model to describe the transfer		4.1 Energy Flow in	.5
matter and represent this phenomenon in a mathematical model to describe the transfer of energy and matter between trophic levels.	<u>ACT Standard</u>	4.1 Energy Flow in	.5

Analyze examples of ecological succession, identifying and explaining the order of events responsible for the formation of a new ecosystem in response to extreme fluctuations in environmental conditions or catastrophic events.		 6.1 Habitats, Niches, and Species Interactions 6.2 Succession 6.3 Biodiversity, Ecosystems, and Resilience 	1 1 .5
Chapter Sixteen: Population Ecology			
TN State Standard	ACT Standard	Pacing	
BIO1.LS2.1 Analyze mathematical and/or computational representations of population data that support explanations of factors that affect		5.1 How Populations Grow	.5
population size and carrying capacities of populations within an ecosystem. Examine a representative ecosystem and based on interdependent relationships present, predict population size effects due to a given disturbance.		5.2 Limits to Growth	1
		5.3 Human Population Growth	.5
		1 day for common asse	ssment
		Total number	14